High Performance JavaScript

Nicholas C. Zakas
Yahoo!, Inc.

fronteers | October 9, 2010

Who's this guy?

e M= =
Principal Front End Contributor,
Engineer Creator of YUI Test
\
; Professional
Professional . : [\ { .
-f'a"asc"pt Alax Even Faster
or Web Developers %
2nd Edition Wﬁ‘b Sites

Author Lead Author Contributor Lead Author

e i+ 8o

il N/

Ewittery

@slicknet

(Complaints: @codepoS8)

Does JavaScript performance
matter?

After all, all browsers now have
optimizing JavaScript engines

Tracemonkey/
JaegarMonkey
(3.5+)

Squirrelfish Chakra Karakan
(4+) (9+) (10.5+)

Webkit SunSpider Benchmark

In ms; Lower values are better

2000

1500

So our scripts are getting really,
really fast

\x

15

old

E G
A s gAY

computers ran slow applications

Small amounts of CPU power and memory

w computers are generally faster but
slow applications still exist

More CPU + more memory = less disciplined application development

gl L ™ P
% % .

Ne

s
ro
<
B

It's still possible to write slow
JavaScript on the new, faster
JavaScript engines

JavaScript performance
directly
affects user experience

Home Profile Find People Settings Help Sign out

1s getting tired of javascript. All it does
1s slow down page navigation and add
complicated layouts and consume
zillion resources

—_—— maryar _—e L e AT -
ro5 PM May 12th from XMPP Gatewray

ultraleet]
Juan Bello

& 2009 Twitter About Uz Contact Blog Status Apps AP

Where to start?

The UI Thread

The brains of the operation

The browser UI thread is responsible for
both Ul updates and JavaScript execution

Only one can happen at a time

4 I.. 5 ¥ / = ;] P

i

Jobs for UI updates and 'JavaScr'ipt' execution are
added to a Ul queue if the UI thread is busy

Each job must wait in line for its turn to execute

j R L - TR

<button id="btn" style="font-size: 30px; padding: 0.5em
lem">Click Me</button>

<script type="text/javascript">
window.onload = function () {
document.getElementById ("btn") .onclick = function () {
//do something
};
};
</script>

Before Click

Ul Thread

time >

Ul Queue

When Clicked

Ul Thread

time >

Ul Queue

Ul Update

onclick

Ul Update

When Clicked

Ul Thread

Ul Update

1\
time |\ >
\ Ul Queue

J onclick

Draw down state

‘ Click Me ‘ Ul Update

When Clicked

Ul Thread

Ul Update onclick

time >

Ul Queue

Ul Update

When Clicked

Ul Thread

Ul Update onclick Ul Update

y
time >

Ul Queue

Draw up state

‘ Click Me ‘

No UI updates while JavaScript is
executing

o

JavaScript May Cause UI Update

<button id="btn" style="font-size: 30px; padding: 0.5em
lem">Click Me</button>

<script type="text/javascript">
window.onload = function() {
document.getElementById ("btn") .onclick = function () {
var div = document.createElement (“div”) ;
div.className = “tip”;
div.innerHTML = “You clicked me!”;
document.body.appendChild (div) ;
};
};
</script>

A UI update must use the latest
info available

Long-running JavaScript

Unresponsive Ul

Responsive Ul

Ul Thread

Ul Update JavaScript Ul Update

time >

Unresponsive Ul

Ul Thread

Ul Update JavaScript Ul Update

time >

The longer JavaScript runs,
the worse the user experience

The runaway script timéf
from running for too long

Each browser imposes its own limit (except Opera)

Internet Explorer

Windows Internet Explorer

'."_\ otop running this scrnpt?
L

A script on this page is causing Internet Explarer to run slowly.
If it continues to run, your computer may became
UNresponsive,

Firefox

Warning: Unresponsive script

A script on this page may be busy, or it may have stopped responding. ¥ou can stop the scrnipt
now, open the script in the debugger, ar let the script continue.

acnpt: file: Y C/Documents%20and %205 ettings/Micholas/Desktop/LongRunning=criptTest . hitm:b
[] Don't ask me again

Stop script | | Debug script | | Continue

Slow Script

A script on the page file:///C:/Documents¥®¥20and
%z 05ettings /Nicholas/Desktop/

LongRunningScriptTest.htm is making Safari

unresponsive. Do you want to continue running the
script, or stop it?

(Stop) (Continue)

A S i

e

| Google Chrome

The following page(s) have become unresponsive.
‘ou can wait for them to become responsive ar kill
them.

D LongRunningScripkTesk, htm

Kill pages t Wiait i

http://www.flickr.com/photos/wordridden/426920261/
|

Runaway Script Timer Limits

Internet Explorer: 5 million statements
Firefox: 10 seconds
Safari: 5 seconds

Chrome: Unknown, hooks into normal crash
control mechanism

Opera: none

Does JIT compiling help?

Interpreted JavaScript

Ul Thread

Interpret

time >

JITed JavaScript (1°* Run)

Ul Thread

Compile Execute

time >

JITed JavaScript (After 1 Run)

Ul Thread

Execute

time >

How Long Is Too Long?

“0.1 second [100ms] is about the limit for
having the user feel that the system is reacting
instantaneously, meaning that no special
feedback is necessary except to display the
result.”

- Jakob Nielsen

o

Translation:
No single JavaScript job should
execute for more than 100ms to
ensure a responsive UI

Recommendation:
Limit JavaScript execution to no more
than 50ms

measured on IE6 :)

Doing so makes your program
awesome

Loadtime Techniques

Don't let JavaScript interfere with page load performance

During page load, JavaScript
takes more time on the UI thread

<!doctype html>

<html>

<head>
<title>Example</title>

</head>

<body>
<p>Hello world!</p>
<script src="foo.js"></script>
<p>See yal'!</p>

</body>

</html>

Ul Thread

Result

Ul Update

JavaScript

Ul Update

time

/

Result

Ul Thread

Hello world! foo.js See ya!

time >

Result

Ul Thread

Hello world! Download Parse | Run See ya!

time >

The UI thread needs to wait for the script to
download, parse, and run before continuing

Result

Ul Thread
Hello world! Download Parse | Run See ya!
i A)
Y ¥
Variable Constant

Download time takes the longest and is variable

Translation:
The page doesn't render while
JavaScript is downloading, parsing, or
executing during page load

<!doctype html>
<html>
<head>
<title>Example</title>
</head>
<body>
<script src="foo.js"></script>
<p>Hello world!'</p>
<script src="bar.js"></script>
<p>See yal'!</p>
<script src="baz.]js"></script>
<p>Uh oh!</p>
</body>
</html>

Result

Ul Thread

JavaScript || Ul Update JavaScript Ul Update JavaScript

time >

The more scripts to download in between UI
updates, the longer the page takes to render

Technique #1: Put scripts at the
bottom

% ahool

My Wahoo! Mail

YAHOO! DEVELOPER NETWORK

MY PROJECTS SERVICES & TOOLS RESOURCES + SUPPORT ~

WO FPerformance Best Practices (Rules)

Best Practices for Speeding Up Your Web Site

The Exceptional Perdformance team has identified a number of best practices for making web pages fast. The list
includes 35 best practices divided into ¥ categories.

Fitter by category: Content Server Cookie CS5 JavaScript Images Mobile All

1. Put Scripts at Bottom

MWake JavaScript and C35 External
Minify JawaScript and C55
Remove Duplicate Scripts

Minimize DOM Access

N

Develop Smart Event Handlers

Put Scripts at the Bottom
tay: javascript

The problem caused by scripts is that they block parallel downloads. The HTTR/1.1 specification suggests that
browesers download no more than two components in parallel per hastnarme. If you serve your images from multiple
hostnames, you can get maore than two downloads to aceur in parallel. While a script is downloading, however, the
broweser won't start any other downloads, even on different hostnames.

In some situations it's not easy to move scripts to the bottom. If, for example, the script uses document . write
to insert part of the page's content, it can't be moved lower in the page. There might also be scoping issues. In
many cases, there are ways to workaround these situations.

An alternative suggestion that often comes up is to use deferred scripts. The DEFER attribute indicates that the
script does not contain document.write, and 1s a clue to browsers that they can continue rendering. Unfortunately,
Firefox doesn't support the DEFER attribute. In Internet Explorer, the script may be deferred, but not as much as
desired. If a script can be deferred, it can also be moved to the bottom of the page. That will make your web pages
load faster.

top | discuss this rule

RECENT BLOG ARTICLES B viewy 3l
Boomerang and the WebTiming API
Thu, 29.Jul 2010

Mobile Browser Cache Limits, Revisited
han, 12 Jul 2010

Mobile Browser Cache Limits: Android, i05,
amd weh(05S
han, 28 Jun 2010

Performance testing with Boomerang
Sat, 26 Jun 2010

Philip Tellis on performance: a developer
evening in London, England
Tue, 01 Jun 2010

YAHOO! GROUPS DISCUSSIONS view all

YSlow - Web Metrics Framework
Sat, 18 Sep 2010

Re: Wish to link to Smushit with specified
images for optimization
Thu, 16 Sep 2010

DEFLATE is superior to GZIP
Wed, 15 Sep 2010

Analysis of a large YSlow dataset
han, 13 Sep 2010

Re: Wish to link to Smushit with specified
images for optimization
Sun, 12 Bep 2010

<!doctype html>

<html>

<head>
<title>Example</title>

</head>

<body>
<p>Hello world!</p>
<p>See ya!</p>
<script src="foo.js"></script>

</body>

</html>

Put Scripts at Bottom

Ul Thread
Ul Update Ul Update JavaScript || JavaScript JavaScript
time >

Even if there are multiple scripts, the page
renders quickly

Technique #2: Combine
JavaScript files

<!doctype html>
<html>
<head>
<title>Example</title>
</head>
<body>
<p>Hello world!'</p>
<p>See ya!</p>
<script src="foo.js"></script>
<script src="bar.js"></script>
<script src="baz.js"></script>
</body>
</html>

Ul Thread

Ul Update || JavaScript JavaScript JavaScript

time >

Each script has overhead of downloading

Ul Thread

Ul Update JavaScript

time >

Combining all of the files limits the network
overhead and gets scripts onto the page faster

<!doctype html>

<html>

<head>
<title>Example</title>

</head>

<body>
<p>Hello world!'</p>
<p>See ya!</p>
<script src="foo-and-bar-and-baz.js"></script>

</body>

</html>

Technique #3: Load scripts
dynamically

Basic Technique

var script = document.createElement ("script"),

body;
script.type = "text/javascript";
script.src = "foo.js";

body .appendChild (script, body.firstChild) ;

Dynamically loaded scripts are non-blocking

Downloads no longer block the
UI thread

<!doctype html>

<html>

<head>
<title>Example</title>

</head>

<body>
<p>Hello world!</p>
<script src="foo.js"></script>
<p>See yal'!</p>

</body>

</html>

Using HTML <script>

Ul Thread
Hello world! Download Parse | Run See yal
time >

<!doctype html>
<html>
<head>
<title>Example</title>
</head>
<body>
<p>Hello world!'</p>
<script>
var script = document.createElement ("script"),
body = document.body;
script.type = "text/javascript";
script.src = "foo.js";
body.insertBefore (script, body.firstChild);
</script>
<p>See ya!</p><!'-- more content -->
</body>
</html>

Using Dynamic Scripts

Ul Thread
Hello world! See yal Run Ul Update
time >

Download Parse

Only code execution happens on the UI thread,
which means less blocking of UI updates

function loadScript(url, callback) {

var script = document.createElement ("script"),
body = document.body;
script.type = "text/javascript";

if (script.readyState){ //IE <= 8
script.onreadystatechange = function () {
if (script.readyState == "loaded" ||
script.readyState == "complete") {
script.onreadystatechange = null;

callback () ;

}i
} else { //Others
script.onload = function() {

callback () ;
};

script.src = url;
body.insertBefore (script, body.firstChild) ;

Usage

loadScript ("foo.js", function() {
alert ("Loaded!'") ;

})

Timing Note:
Script execution begins immediately
after download and parse — timing of
execution is not guaranteed

Using Dynamic Scripts

Ul Thread

Hello world! Run See yal Ul Update

time >

Download | Parse

Depending on time to download and script size,
execution may happen before next UI update

Technique #4: Defer scripts

<!doctype html>

<html>

<head>
<title>Example</title>

</head>

<body>
<p>Hello world!'</p>
<script defer src="foo.js"></script>
<p>See yal'!</p>
<!-- even more markup -->

</body>

</html>

Support for <script defer>

Deferred scripts begin to
download immediately,
but don't execute until all UI
updates complete
(DOMContentLoaded)

Using <script defer>

Ul Thread
Hello world! See ya! More Ul More Ul Run
time >
Download Parse

Similar to dynamic script nodes, but with a
guarantee that execution will happen last

Timing Note:

Although scripts always execute after
UI updates complete, the order of
multiple <script defer> scripts is not
guaranteed across browsers

Technique #5: Asynchronous
scripts

<!doctype html>

<html>

<head>
<title>Example</title>

</head>

<body>
<p>Hello world!'</p>
<script async src="foo.js"></script>
<p>See yal'!</p>
<!-- even more markup -->

</body>

</html>

Support for <script async>

Asynchronous scripts behave a
lot like dynamic scripts

Using <script async>

Ul Thread
Hello world! See yal Run Ul Update
time >

Download Parse

Download begins immediately and execution is
slotted in at first available spot

Note:
Order of execution is explicitly not
preserved for asynchronous scripts

Runtime Techniques

Ways to ensure JavaScript doesn't run away

function processArray(items, process, callback) {
for (var i=0,len=items.length; i < len; i++) {
process (items[i]) ;

}
callback () ;

Technique #1: Timers

JavaScript Timers

* Created using setTimeout()

* Schedules a new JavaScript execution job for
some time in the future

* When the delay is up, the job is added to the
UI queue

— Note: This does not guarantee execution
after the delay, just that the job is added
to the UI queue and will be executed when
appropriate

JavaScript Timers

* For complex processing, split up into timed
functionality

* Use timers to delay some processing for later

function timedProcessArray (items, process, callback) {

//create a clone of the original
var todo = items.concat();

setTimeout (function () {

var start = +new Date() ;
do {

process (todo.shift());
} while (todo.length > 0 &&

(+tnew Date() - start < 50));

if (todo.length > 0) {

setTimeout (arguments.callee, 25);
} else {

callback (items) ;

}, 25);

When Clicked

Ul Thread

time >

Ul Queue

Ul Update

onclick

Ul Update

When Clicked

Ul Thread

Ul Update

time >

Ul Queue

onclick

Ul Update

When Clicked

Ul Thread

Ul Update onclick

time >

Ul Queue

Ul Update

Ul Thread

When Clicked

Ul Update

onclick

Ul Update

time

/

Ul Queue

After 25ms

Ul Thread

Ul Update || enciick || Ul Update

time >

Ul Queue

JavaScript

Ul Thread

After 25ms

Ul Update

onclick

Ul Update

JavaScript

time

/

Ul Queue

Ul Thread

After Another 25ms

Ul Update

onclick

Ul Update

JavaScript

time

/

Ul Queue

JavaScript

Ul Thread

After Another 25ms

Ul Update

onclick

Ul Update

JavaScript

JavaScript

time

/

Ul Queue

Technique #2: Web Workers

Web Workers
Draft Recommendation — 3 April 2010

You can take part in this work. doin the working group's discussion list.
Web designers! Ve have a FAQ, aforum, and a help mailing list for youl

This version:
hittn: Mheshabs orchsns

Version history:

Twitter messages (non-editorial changes only): http fwitter comMANHATWG
Commit-\atchers mailing list bt Aists whatwg. orgdistinfo.cgi/commit-watchers-whabwg . org
Interactive YWeb interface: httphimlS orgioolsiwelb-workers-tracker

Subversion interface: hitpoffsvnawhatwg.orgfwebwiorkers!

Call For Comments

Issues:

To send feedback: whatwai@whatwg.org

Toview and vote on feedback: httpfeena whatw.org/issues!
Editor:

lan Hickson, Google, iani@@hixie ch

B Copyight 2004-2000 Aagple Corpwuter, fre., Mozillz Fourdalion, and Cpem Softwame A54.
rou ae granied @ oerse o wee, momdyce and creghe dedratine wordis of Hhis docusrent.

v
-
| =
]
=
=
o
O
S
]
L=
T
&

Abstract

This specification defines an AP that allows VWeb application authors to spawn background wiorkers running
scripts in parallel to their main page. This allows for thread-like operation with message-passing as the
coordination mechanism.

Web Workers

* Asynchronous JavaScript execution
 Execution happens in a separate process
— Not on the UI thread = no UI delays

» Data-driven API

— Data is serialized when sending data into
or out of Worker

— No access to DOM, BOM

— Completely separate execution
environment

//in page

var worker = new Worker ("process.js")

worker .onmessage = function (event) {
useData (event.data) ;

};

worker .postMessage (values) ;

//in process.js
self.onmessage = function (event) {
var items = event.data;
for (var i=0,len=items.length; i < len; i++) {
process (items[i]) ;
}

self.postMessage (items) ;

};

When Clicked

Ul Thread

time >

Ul Queue

Ul Update

onclick

Ul Update

When Clicked

Ul Thread

Ul Update

time >

Ul Queue

onclick

Ul Update

When Clicked

Ul Thread

Ul Update onclick

time >

Ul Queue

Ul Update

When Clicked

Ul Thread

Ul Update onclick

time >

Worker Thread Ul Queue

Ul Update

Ul Thread

When Clicked

Ul Update

onclick

Ul Update

time

/

Worker Thread

Ul Queue

JavaScript

Worker Thread Complete

Ul Thread

Ul Update

onclick

Ul Update

time

/

Ul Queue

onmessage

Worker Thread Complete

Ul Thread

Ul Update

onclick

Ul Update

time

/

Ul Queue

Support for Web Workers

The browser UI thread is responsible for
both Ul updates and JavaScript execution

Only one can happen at a time

Responsive Ul

Ul Thread

Ul Update JavaScript Ul Update

time >

Unresponsive Ul

Ul Thread

Ul Update JavaScript Ul Update

time >

Avoid Slow Loading JavaScript

* Put scripts at the bottom

 Concatenate scripts into as few files as
possible

* Choose the right way to load your scripts
— Dynamically created scripts
— Deferred scripts
— Asynchronous scripts

Avoid Slow JavaScript
» Don't allow JavaScript to execute for more
than 50ms
* Break up long JavaScript processes using:

— Timers
- Web Workers

The End

Etcetera

My blog:
www.nczonline.net

Twitter: b 22V

OYREILLY" | “Wnsioo!, #hida

These Slides:
http://slideshare.net/nzakas/presentations/

Rate Me:
http://spkr8.com/t/4568

http://www.nczonline.net/
http://slideshare.net/nzakas/presentations/

Questions?

Creative Commons Images Used

http://www.flickr.com/photos/8628950@N06/1332225362/
http://www.flickr.com/photos/hippie/2406411610/
http://www.flickr.com/photos/55733754@N00/3325000738/
http://www.flickr.com/photos/eurleif/255241547/
http://www.flickr.com/photos/off_the_wall/3444915939/
http://www.flickr.com/photos/wwarby/3296379139/
http://www.flickr.com/photos/derekgavey/4358797365/
http://www.flickr.com/photos/mulad/286641998/

	Enterprise JavaScript Error Handling
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128

